

Hutchinson Builders – 31 Duncan St, Brisbane (6 of 20 mixes)

In Accordance with Environdec c-PCR-003 Concrete, concrete elements (EN 16757), ISO 14025 and EN15804:A2 Programme: The International EPD® System Programme Operator: EPD Australasia Limited

EPD Registration Number: **S-P-10240** Date of Publication: 2023-10-03 Valid Until: 2028-10-03 Date of Version: 1.0 2023-10-03

Hanson & Sustainability	3
Life Cycle & Processes	10
Product Environmental Performance	16
References	24

Hanson & Sustainability

4.71.451.118

Global Expertise Local Experience

Using world-class technologies and service platforms, we supply a comprehensive range of high-quality concrete, aggregates and sand products. We also produce **road base**, **asphalt**, **and sustainable and** recycled materials.

We are backed by Heidelberg Materials - one of the world's largest building materials companies focused on developing materials to build our future.

At the centre of our actions lies our responsibility for the environment.

Our Mission: Leading change with our customers to build a sustainable future.

Our 5 Sustainability Pillars

To reduce our CO₂ emissions by improving our product performance and increasing operational efficiencies in our plants and fleets.

Sustainable Products

To improve our product sustainability by continuously increasing the use of alternative resources as substitutes for natural materials, and promoting our sustainable product range.

Biodiversity

To preserve and enhance the natural environment where we operate and create habitat through implementation of biodiversity management plans.

To increase water efficiency by implementing water conservation plans aimed at improving water capture, storage and use.

Corporate Social Responsibility

To provide ongoing, meaningful community benefit by increasing diversity, social procurement, and community engagement.

Introducing the enrich - 30 / 40 / 50 Range

Our enrich-30/40/50 range has all the properties you expect of standard concrete, with a guaranteed minimum of 30%, 40% or 50% carbon reduction.

And we can provide **reporting based on the actual deliveries of the project**

- **Pre-Project**
- **During Project** •
- **Post-Project** •

enrich-30 enrich-40 enrich-50

Introducing ECOTERA®

The Challenge with Low Carbon Concrete

- Historically substituting materials in concrete mix design to lower the carbon content effects performance
 - Slow early strength development •
 - Effect on Workability and Setting Time •

The Solution

- A concrete that has:
 - High Performance ٠
 - Low Carbon 30% to 50% reduction •


ECOTERA®

ECOTERA® - High Performance Low Carbon Concrete

ECOTERA[®]

A unique and innovative product:

Requires no additional safety requirements compared to standard concrete - pump, place and finish within standard WHS requirements.

Low Carbon Concrete

Up to 50% CO2 reduction compared to standard concrete.

• Low Carbon Concrete up to 50% reduction in CO₂

Early age strength equivalent to standard post-tensioned concrete

Lower shrinkage than standard concrete – average shrinkage range between 250microstrain to 450microstrain

High Modulus of Elasticity (MOE)

Improved Flexural Strength up to 50%

Aesthetically pleasing due to a lighter colour

Early Age Strength

Early age strength equivalent to standard post-tensioned concrete for faster construction.

Lower Shrinkage

Lower shrinkage than standard concrete. Tested in accordance with AS1012.13.

Product EPD Process

Declared Unit is 1m3 of Concrete

• The process is used to produce an accurate estimation at all stages of the product life cycle from cradle to grave. Estimation at each stage is based on actual data which is a combination of both current and prior year average consumption per declared unit.

Life Cycle Assessment Tool

 For the purposes of creating this Environmental Product Declaration (EPD), the Global Cement & Concrete Association (GCCA) concrete EPD tool v. 4.0 (short: GCCA tool) has been employed.

EPDs are created under either of 2 streams:

- Generic Stream The class of product modelled is used for a particular geographical region using averaged data across operations.
- Project-specific stream Models the manufacture of specific products required for a particular project being delivered from specific plant(s) using weighted average data where relevant and possible. Reports created after the completion of a project offer the highest accuracy, including all mix variations for each delivery.

The main data categories include:

- The average bill of materials (BOM) for the concrete mix selected in the range of concrete plants specified including their average raw material travel distance, or the calculated BOM based on actual delivered materials incl. travel distances (average or specific) for the producing plants.
- The average fuel, water and energy consumption per declared unit between those plants;
- Plant production waste based on a nationally calculated figure;
- Recarbonation of concrete is determined through pre-defined values within GCCA tool for the type of construction project, where known; and,
- End of life recycling is based upon industry data.

Assumptions & Limitations

- All modelling assumptions adopted from the GCCA Tool.
- Raw material (inbound) transport distances is the previous year's travel distance average weighted according to deliveries across operations.
- Concrete mixes are assumed to use an equal amount of site fuel and energy and responsible for an equal amount of waste flows.
- plants.
- applied.
- Water usage in operations is averaged over the full geographic region of study.
- Grid purchased electricity mixes is based on the specific state's energy mix excluding imports.
- Travel for materials sources internationally included from shipping origin.

This EPD Process is certified using GCCA international modelling of energy use and environmental impact to obtain a suitable estimation for products manufactured.

Pre-defined cement and clinker data provided by the GCCA tool are used only where no better (supplier/source specific) information is available.

This is a project-specific EPD.

- Actual delivered materials are used to calculate the bill of materials across all producing
- The project-specific travel distances from all producing plants to the construction site were

Product EPD Process

Bill of Materials	Low Level [%]	High Level [%]
Cement	8	17
Supplementary Cementitious Materials	2	9
Aggregates	69	81
Water	5	9
Admixtures		<1%
Reinforcements		<1%

The contents of the materials contained in the subject mixes are contained in the table above, illustrated by percentage of weight.

Hazard information related to concrete placement

- GHS classifications
 - Skin Corrosion Category 1
 - Serious Eye Damage Category 1
 - Skin Sensitisation Category 1
 - Specific Target Organ Toxicity (Repeated Exposure) Category 2
- Hazard Statement(s)
 - H302 –Harmful if swallowed
 - P280 –Wear protective gloves/clothing/eye protection.
 - H314 Causes severe skin burns and eye damage
 - H317 May cause an allergic skin reaction
 - H318 Causes serious eye damage
 - H373 May cause damage to lungs by inhalation (dust from dried product)

By-Products, Recycled Materials & Allocations

The following materials are the product of waste streams of other industrial processes:

Fly ash

Ground Granulated Blast Furnace Slag (GGBFS)

has been employed.

Silica fume

Recycled concrete aggregate

delivery to the recycling facility.

Manufactured Sand

Packaging

In Accordance with Environdec c-PCR-003 Concrete, concrete elements (EN 16757), ISO 14025 and EN15804:A2

• A by-product of coal-fired power stations, fly ash is considered to carry no environmental impact for the purposes of this EPD.

Blast furnace slag is a by-product of steel production that is dried and ground for use in concrete production. To duly allocate the environmental impacts, economic allocation

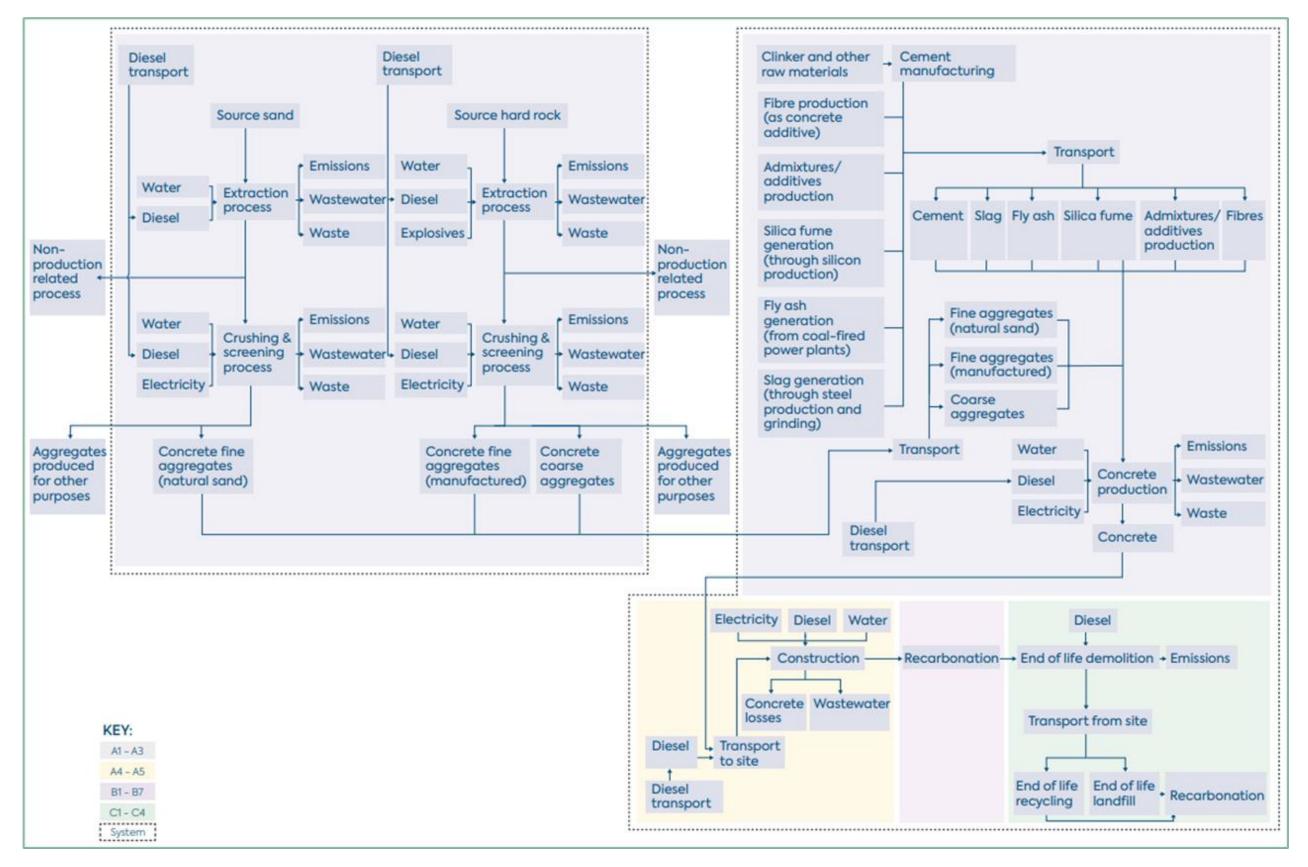
As a by-product of silicon production, silica fume is considered to carry no environmental burden for the purposes of this EPD.

 A component of the boarder category of construction and demolition waste, environmental impacts are allocated on the basis of reprocessing the material following

• A by-product of processing coarse aggregate. This manufactured sand is a direct replacement for natural sand and prevents the need to extract natural resources.

• This concrete is not produced with any packaging, instead delivered directly to site immediately following production.

Product Lifecycle Stages


Pro	duct Ste	age		truction age	Use Stage							End of Life Stage				Benefits 8 for the product s
Raw Material Supply	Transport	Manufacturing	Transport	Construction/installation process	Use	Maintenance incl. transport	Repair incl. transport	Replacement incl. transport	Refurbishment incl. transport	Operational Energy Use	Operational Water Use	De-construction & demolition	Transport	Re-use recycling	Final Disposal	Reuse, Recovery Recycling
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	Cl	C2	C3	C4	DI
\checkmark	~	~	~	~	~	~	~	~	~	✓	√	~	~	✓	✓	~

& loads e next system

- All stages of the product lifecycle have been considered for this EPD – cradle to grave. By its nature, there are some stages of the lifecycle that are not applicable to the concrete product.
- The scenario applied for the use stage assumes that under normal use, no maintenance repair or replacement of the product during its service life is required. As a result, the values are displayed as zero.
- Those stages that, due to practicality, cannot be assessed accurately draw on default values of the underlying GCCA tool.
- For Project-specific EPDs, allocation is determined by the supplying plants with estimates as to the likely volume to be delivered from each. Where existing and sufficient data exists, historical data will be used to make this determination.

Product Lifecycle Stages

- The lifecycle model and system boundary is the same for both Generic and Project-specific concrete EPDs, as detailed in the graphic.
- All stages of the lifecycle, from quarry to recycling are covered by the EPD.

Cut-off rules

The cut-off threshold for the LCA study was flows contributing less than 1% for any individual input included in the LCA. No flows were deliberately excluded due to this threshold, however particularly minor impacts (e. g. packaging of chemical admixtures) were not considered. Cut off will occur only when data, or reliable estimates, are not practical to source. The contribution of capital goods (production equipment and infrastructure) and personnel are non-attributable and excluded for the system boundary.

Product Data Sources

CA Stage	ltem	Source	Timing	Data Quality
roduct Description	Product description and density	ERP report Bill of Materials and material specific data	Upon EPD creation	High, Primary
1-3 Materials	Raw Materials	ERP report BOM and Mix design compilation used in conjunction with material template Note. Upstream process for raw materials utilise data from ecoinvent 3.5. Cement and Clinker details to be provided by cement producer or, where not available, GCCA Tool default data used in conjunction with ecoinvent 3.5.	Upon EPD creation	High, Secondary
1-3 Materials	Inbound travel (raw materials)	 ERP report 2. Inbound Travel drawing from actual deliveries from sources to operations. Where delivery data not available, travel calculated based on Google Maps. Train travel (only for operations around Melbourne) calculated by actual Google Maps distance. 	Full prior year data, average per delivery Actual travel distances between source and operation.	High, Primary
1-3 Materials	Allocation Factor (for secondary co products):	Slag: AusLCI	Upon EPD creation	Secondary, Medium
		Fly Ash & Silica fume: no allocation as they are industrial by-products.		
1-3 Manufacturing	Plant Energy and Fuel Consumption	ERP Report 3. Concrete Energy Use, drawing on actual invoiced usage.	Full prior year data, average per metre	Primary, High
1-3 Manufacturing	Electricity Energy Sources	Sourced from OpenNEM <u>https://opennem.org.au;</u> Australian Energy Market Operator.	Full year prior data, state-based, percentages	Secondary, High
1-3 Waste Management	Waste and waste water	Waste water volume set to 9L per 1 m ³	Static	Secondary, Medium
4-5 Construction	Outbound Travel	 For generic EPDs: ERP report 5. Outbound travel drawing from actual deliveries from operations to customer sites. Where data not available, travel calculated based on Google Maps. For project-specific EPDs: The project-specific travel distances from the main plant to the construction site was applied. 	Generic EPD: Full prior year data, average per delivery. Project-specific EPD: Actual travel distances between plant and construction site.	Primary, High
Use	Re-carbonation	Default GCCA Tool settings	NA NA	Proxy, Medium
. End of Life Demolition	Demolition	Default GCCA Tool settings	NA	Proxy, Medium
End of Life Transport	Transport	Default GCCA Tool settings	NA	Proxy, Medium
. End of Life /aste Processing	Recycling Rate at EOL	Masonry materials recycling rate obtained from annual National Waste Report published (e.g. for National Waste Report 2022, page 41, figure 29) <u>National Waste Reports</u>	Prior year National Waste Report if available. If not, then latest available	Proxy, Medium
:. End of Life isposal	Disposal Rate at EOL	Disposal rate inverse of masonry materials recycling rate obtained from annual National Waste Report published	Prior year National Waste Report if available. If not, then latest available	Proxy, Medium
		National Waste Reports		
Benefits and Loads		Default GCCA Tool settings	NA	NA
eneral	General	Ecolnvent database used by the GCCA tool Note: This covers environmental information for all raw materials and energy sources. Cement, where data is available, employs specific raw material and energy data for the product manufacture and for each component draws on Eco Invent Data.	NA	Secondary, High

Comment	All information about goal and scope necessary for results report, available in GCCA's Industry EPD Tool. The removals and emissions associated with biogenic cark even not relevant in the sector. The only limitation is the up elements or biobased packaging materials) and reemission not affect the GWP-tot indicator. The tool does not calculate the 'Radioactive waste dispos
Core Environmental Impact Indicators	GWP-GHG (Global Warming Potential, GHG) • GWP-tot (Global Warming Potential biogenic • ODP (Depletion potential of the stratospheric ozone laye (Eutrophication potential, freshwater) • EP-mar (Eutrophication • EP-ter (Eutrophication potential, Accumulated Exceeda (Abiotic depletion potential for non- fossil resources) • ADI deprivation potential, deprivation-weighted water consur

ts interpretation are present in the latest version of the "LCA Model"

rbon content of i) the product and ii) the packaging are not significant or uptake of CO2 in A1-A3 (e.g. biobased insulation materials in precast ion in A5 (packaging end-of-life) or C3-C4 (product end-of-life). This does

osed' indicator, it is considered not to be significant for the sector.

Global Warming Potential total) • GWP-fos (Global Warming Potential ic) • GWP-luc (Global Warming Potential land use and land use change) ver) • AP (Acidification potential, Accumulated Exceedance) • EP-fw cation potential, fraction of nutrients reaching marine end compartment) ance) • POCP (Formation potential of tropospheric ozone) • ADPE OPF (Abiotic depletion for fossil resources potential) • WDP (Water (user) umption)

Additional Environmental Impact Indicators	PM (Potential incidence of disease due to PM emissions) (Potential Comparative Toxic Unit for ecosystems) • HTP (Potential Comparative Toxic Unit for humans - non-can
Parameters Describing Resource Use	PERE (Use of renewable primary energy excluding renew renewable primary energy resources used as raw mater (Use of non renewable primary energy excluding non-re of non-renewable primary energy resources used as raw resources) • SM (Use of secondary materials) • RSF (Use fuels) • NFW (Net use of fresh water)
Waste Categories	HWD (Hazardous waste disposed) • NHWD (Non-hazardo
Output Flows	CRU (Components for re-use) • MFR (Materials for recyc
Extra Indicators	CC (Emissions from calcination and removals from carbo sources used in production processes) • CWNRS (Emission production processes) • GWP-prod (Removals and emissions • GWP-pack (Removals and emissions associated with k

s) • IRP (Potential Human exposure efficiency relative to U235) • ETP PC (Potential Comparative Toxic Unit for humans - cancer) • HTPNC ncer) • SQP (Potential soil quality index)

wable primary energy resources used as raw materials) • **PERM** (Use of erials) • **PERT** (Total use of renewable primary energy resources) • **PENRE** renewable primary energy resources used as raw materials) • **PENRM** (Use w materials) • **PENRT** (Total use of non-renewable primary energy e of renewable secondary fuels) • **NRSF** (Use of non-renewable secondary

dous waste disposed) • **RWD** (Radioactive waste disposed)

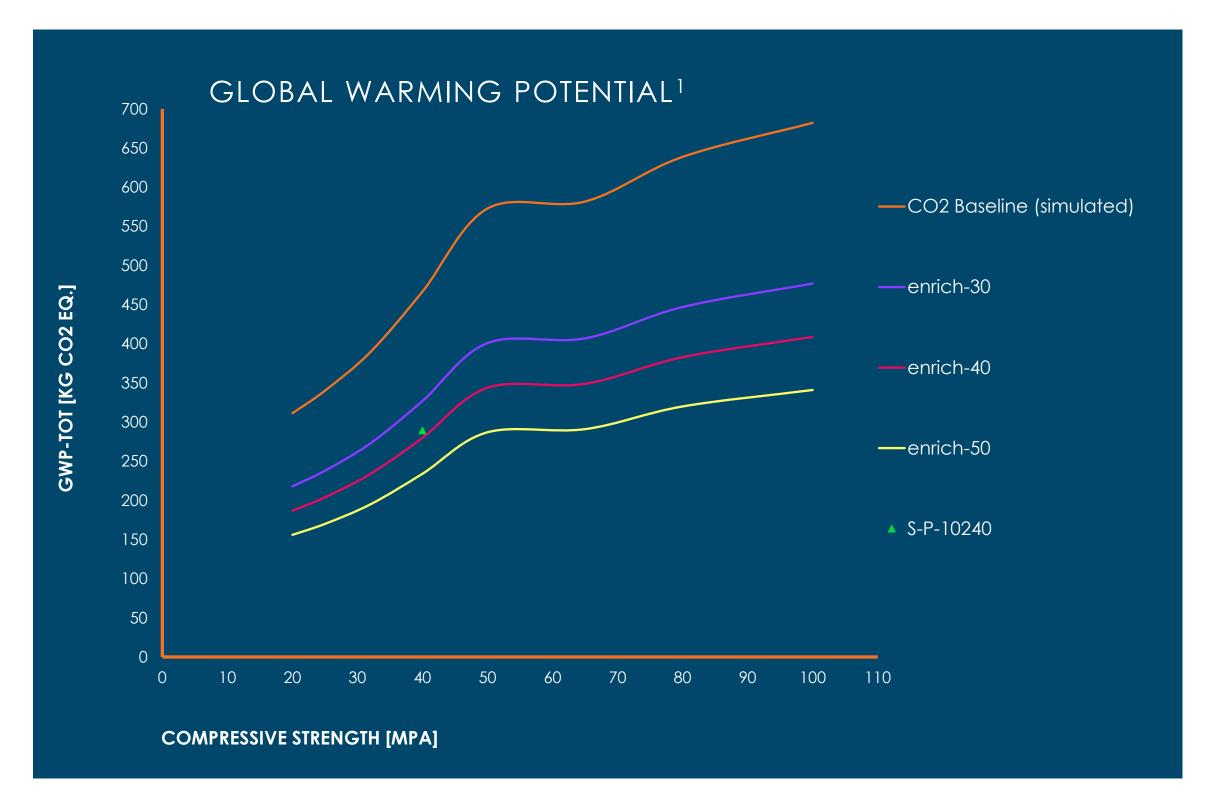
cling) • MER (Materials for energy recovery) • EE (Exported energy)

conation) • **CWRS** (Emissions from combustion of waste from renewable ions from combustion of waste from non-renewable sources used in issions associated with biogenic carbon content of the bio-based product) biogenic carbon content of the bio-based packaging)

 The EPD numbers presented are indicative of local material performance at the time of publishing and are subject to change based on material availability and seasonal factors.

Product Identification	EPD Registration Number	GP ¹ Content [kg/m ³]	CO ₂ Reference ² [kg/m ³]	CO ₂ Reduction ³ [%]	GWP-tot ⁴ [kg CO ₂ eq.]	Page
Pump - 40 MPa	S-P-10240	300	467	38%	290	21

¹GP = General Portland Cement, does not include SCMs.


²See Appendix for detailed explanation.

³Calculation: {1 - (GWP-tot - CO2 Reference)} / (CO2 reference).

⁴GWP-tot: Covers A1-A3 only. More detailed information is provided in the following mix-specific tables.

• The EPD numbers presented are indicative of local material performance at the time of publishing and are subject to change based on material availability and seasonal factors.

¹GWP-tot: Covers A1-A3 only. More detailed information is provided in the following mix-specific tables.

²CO₂ Baseline (simulated) is based on the Green Star Mat–4 Concrete Credit User Guide (2012). Detailed explanation is provided in the appendix. ³Plotting style: Scatter plot of values with smooth lines & markers.

Product Identification	Pump - 40 MPa
EPD Registration Number	S-P-10240
Production Site(S)	Brisbane
Compressive Strength	40
Density	2348.1 kg/m³
Reference Service Life	50 Years
Recycling Rate At Eol	78%
Declared Unit	1 m ³
Scope	A1-A3 + A4-A5 + B1-B7 + C1-C4 + D, cradle-to-grave
Methodology	GCCA's Industry EPD Tool for Cement and Concrete (V4.0), International version

EPD Registration Number S-P-10240

Core Environmental Impact Indicators

	· · · · ·	A1-A3	A4	A5	B 1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG	kg CO ₂ eq.	2.90E+02	1.83E+00	1.15E+01	-5.58E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.99E+00	8.99E+00	4.30E+00	-1.83E+00	-1.40E+01
GWP-tot	kg CO₂ eq.	2.90E+02	1.83E+00	1.15E+01	-5.58E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.99E+00	8.99E+00	4.30E+00	-1.83E+00	-1.40E+01
GWP-fos	kg CO₂ eq.	2.89E+02	1.83E+00	1.15E+01	-5.58E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.99E+00	8.98E+00	4.27E+00	-1.83E+00	-1.39E+01
GWP-bio	$kg CO_2 eq.$	7.92E-02	7.16E-04	4.68E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.60E-03	6.43E-03	1.92E-02	1.87E-03	-5.63E-02
GWP-luc	$kg CO_2 eq.$	5.33E-02	6.19E-04	3.55E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.13E-03	5.22E-03	1.46E-02	1.52E-03	-2.44E-02
ODP	kg CFC 11 eq.	6.43E-06	3.49E-07	1.30E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.62E-06	1.51E-06	3.70E-07	9.24E-07	-9.54E-07
AP	mol H+ eq.	1.25E+00	9.47E-03	9.58E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.42E-02	5.43E-02	3.92E-02	2.72E-02	-9.91E-02
EP-fw	kg P eq.	5.87E-02	1.36E-04	2.33E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.02E-04	1.20E-03	3.05E-03	3.32E-04	-5.86E-03
EP-mar	kg N eq.	3.75E-03	1.19E-05	7.03E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.34E-05	8.88E-05	2.11E-04	3.14E-05	-3.79E-04
EP-ter	mol N eq.	2.66E+00	3.39E-02	3.43E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.44E-01	1.91E-01	7.31E-02	9.74E-02	-2.47E-01
POCP	kg NMVOC eq.	6.72E-01	1.02E-02	9.39E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.22E-01	5.59E-02	2.06E-02	2.86E-02	-6.26E-02
ADPE	kg Sb eq.	1.90E-04	3.41E-06	7.38E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.66E-06	1.59E-05	4.56E-06	3.09E-06	-1.60E-04
ADPF	MJ, net calorific value	1.68E+03	2.88E+01	1.35E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.30E+02	1.34E+02	7.60E+01	7.90E+01	-1.60E+02
WDP	m ³ world eq. deprived	9.45E+01	2.12E-01	-1.19E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.67E-01	1.16E+00	1.07E+00	3.82E+00	-2.72E+01

Parameters Describing Resource Use

		A1-A3	A4	A5	B 1	B2	B3	B4	B 5	B6	B7	C1	C2	C3	C4	D
PERE	MJ, net calorific v alue	6.83E+01	8.33E-01	5.71E+00	0.00E+00	7.59E-01	4.90E+00	8.31E+00	2.05E+00	-1.31E+01						
PERM	MJ, net calorific v alue	0.00E+00														
PERT	MJ, net calorific v alue	6.83E+01	8.33E-01	5.71E+00	0.00E+00	7.59E-01	4.90E+00	8.31E+00	2.05E+00	-1.31E+01						
PENRE	MJ, net calorific v alue	1.71E+03	2.88E+01	1.35E+02	0.00E+00	1.30E+02	1.34E+02	7.60E+01	7.90E+01	-1.60E+02						
PENRM	MJ, net calorific v alue	0.00E+00														
PENRT	MJ, net calorific v alue	1.71E+03	2.88E+01	1.35E+02	0.00E+00	1.30E+02	1.34E+02	7.60E+01	7.90E+01	-1.60E+02						
SM	kg	7.38E+01	0.00E+00	7.38E-01	0.00E+00											
RSF	MJ, net calorific v alue	5.88E+00	0.00E+00	5.88E-02	0.00E+00											
NRSF	MJ, net calorific v alue	9.78E+01	0.00E+00	9.78E-01	0.00E+00											
NFW	m³	2.30E+00	6.35E-03	1.19E-01	0.00E+00	1.99E-02	3.58E-02	4.32E-02	8.89E-02	-6.50E-01						

Additional Environmental Impact Indicators

		A1-A3	A4	A5	B 1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PM	Disease incidence	8.71E-06	1.69E-07	1.70E-06	0.00E+00	2.45E-06	8.38E-07	3.50E-07	5.07E-07	-1.16E-06						
IRP	kBq U235 eq.	3.80E+03	1.52E+02	5.87E+02	0.00E+00	6.08E+02	7.68E+02	8.16E+02	3.65E+02	-1.31E+03						
ETP	CTUe	9.93E+02	6.08E+00	1.36E+01	0.00E+00	1.76E+00	2.35E+01	1.59E+00	1.49E+00	-6.78E+00						
HTPC	CTUh	9.93E+02	6.08E+00	1.36E+01	0.00E+00	6.36E-08	1.02E-07	6.33E-08	2.48E-08	-3.34E-07						
HTPNC	CTUh	1.83E-05	3.27E-07	9.71E-07	0.00E+00	2.46E-07	1.41E-06	2.91E-07	1.59E-07	-1.99E-06						
SQP	dimensionless	9.42E-07	1.17E-08	1.91E-07	0.00E+00	7.71E+00	2.19E+02	6.21E+01	1.47E+02	-2.10E+02						

Other Environmental Information Describing Waste Categories

		A1-A3	A4	A5	B 1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								
NHWD	kg	1.25E-01	0.00E+00	5.16E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.16E+02	0.00E+00
RWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								

Environmental Information Describing Output Flows

		A1-A3	A4	A5	B 1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
CRU	kg	0.00E+00														
MFR	kg	0.00E+00	0.00E+00	1.83E+01	0.00E+00	1.83E+03	0.00E+00	0.00E+00								
MER	kg	0.00E+00														
EE	kg	0.00E+00														

Extra Indicators

		A1-A3	A4	A5	B 1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
CC	$kg CO_2 eq.$	1.42E+02	0.00E+00	1.29E+00	-5.58E+00	0.00E+00	-1.94E+00	-4.67E+00	0.00E+00							
CWRS	$kg CO_2 eq.$	7.35E-03	0.00E+00	7.35E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNRS	$kg CO_2 eq.$	8.28E+00	0.00E+00	8.28E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GWP-prod	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GWP-pack	k kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Program Information

EPD Owner	Hanson Construction Materials Pty Ltd L14, 35 Clarence St, Sydney NSW 2000 Phone: 1300 136 464 Online: hanson.com.au
Program Operator	EPD Australasia Limited, 315a Hardy St, Nelson 7010 New Zealar Online: epd-australasia.com Email: info@epd-Australasia.com
Process EPD Certified By	Katherine McFeaters Epsten Group, Inc. 101 Marietta St. NW, Suite 2600, Atlanta, Georgia 30303, USA <u>www.epstengroup.com</u> Accredited by: A2LA, Certificate #3142.03
Product Category Rules	CEN standard EN 15804:A2 (PCR 201 Environdec c-PCR-003 Concr
EN 15804 PCR Review	The Technical Committee The review pane
EPD Registration Number	
Independent Verification of the Declaration and Data, According to ISO 14025:	 EPD process certification EPD verification
Valid From	
Valid To	
Version	
Description of Version Differences (if NOT VERSION 1.0)	
Geographical Scope	
Important Notes	EPDs within the same product cat EPDs of construction products r The EPD Owner maintai
Product Group Classification	UN CPC 88 - Concrete
ANZSIC Classification	2033 hanson.com.au 1300 136 464

	Hanson HEIDELBERGCEMENT Group						
nd							
	Kathuin Amfentes peptengroup Environmental Product Declaration						
19:14 Construction Products, Version 1.2.5) served as the core PCR. rete, concrete elements (EN 16757:2023) served as sub-PCR.							
of the International EPD®System. Chair: Claudia A. Peña. el may be contacted via <u>info@environdec.com</u> .							
S-P-1	S-P-10240						
2023-	10-03						
2028-10-03							
1.0							
Brisban	e, QLD						
tegory but from different programmes may not be comparable. may not be comparable if they do not comply with EN 15804.							
ins full ownership, liability and responsibility for the EPD.							

ete, cement and plaster article manufacturing services

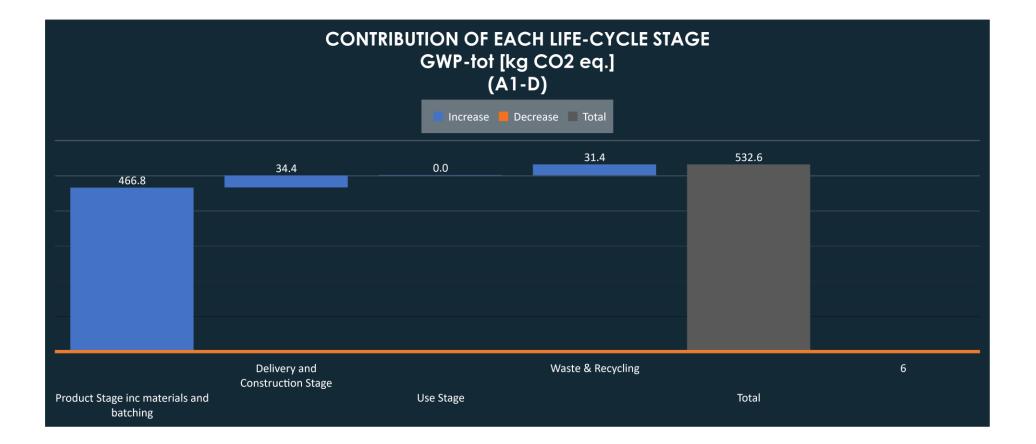
3 Ready Mix Concrete Manufacturing

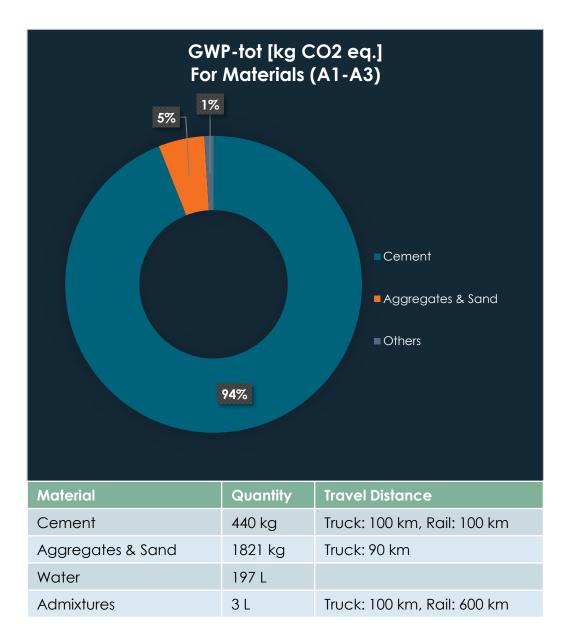
References

- Australian Life Cycle Assessment Society. (2015). Australian Life Cycle Inventory Database Initiative. Retrieved from http://www.auslci.com.au
- National Waste Report. (2022). https://www.dcceew.gov.au/environment/protection/waste/publications/national-waste-reports. Canberra: Department of Climate 2) Change, Energy, the Environment and Water.
- 3) Ecoinvent. (2018, August 23). ecoinvent 3.5 (database). Retrieved from https://www.ecoinvent.org/database/older-versions/ecoinvent-35/ecoinvent-35.html
- EPD International. (2019). General Programme Instructions for the International EPD® System v3.01. Retrieved from envirodec.com 4)
- European Committee for Standardisation (CEN). (2017). EN 16757:2017: Sustainability of construction works Environmental product declarations Product Category 5) Rules for concrete and concrete elements.
- European Committee for Standardisation (CEN). (2017, February). EN 16908:2017: Cement and building lime Environmental Product Declarations Product 6) Category Rules complementary to EN 15804. Brussels.
- European Committee for Standardisation (CEN). (2019). EN 15804:2012+A2:2019: Sustainability of construction works Environmental product declarations Core 7) rules for the product category of construction products. Brussels.
- Google. (n.d.). Google Maps. Retrieved from https://www.google.com.au/maps/ 8)
- International Organization for Standardization. (2015). ISO14020 Environmental Labels and Declarations General Principles. 9)
- International Organization for Standardization. (2017). ISO14025 Environmental Labels and Declarations Type III Environmental Declarations Principles and 10) Procedures.
- 11) International Organization for Standardization. (2020). ISO 14044 Environmental Management Life Cycle Assessment Requirements and Guidelines.
- 12) McConnell, D., Holmes a Court, S., Tan, S., & Cubrilovic, N. (2022). OpenNEM. Retrieved 2023, from https://opennem.org.au/
- 13) Quantis. (2023). GCCA's Industry EPD Tool for Cement and Concrete. Retrieved from https://concrete-epd-tool.org/
- 14) Green Star Mat-4 Concrete Credit User Guide (2012). Retrieved from Mat-4 (gbca.org.au)

FIND OUT MORE

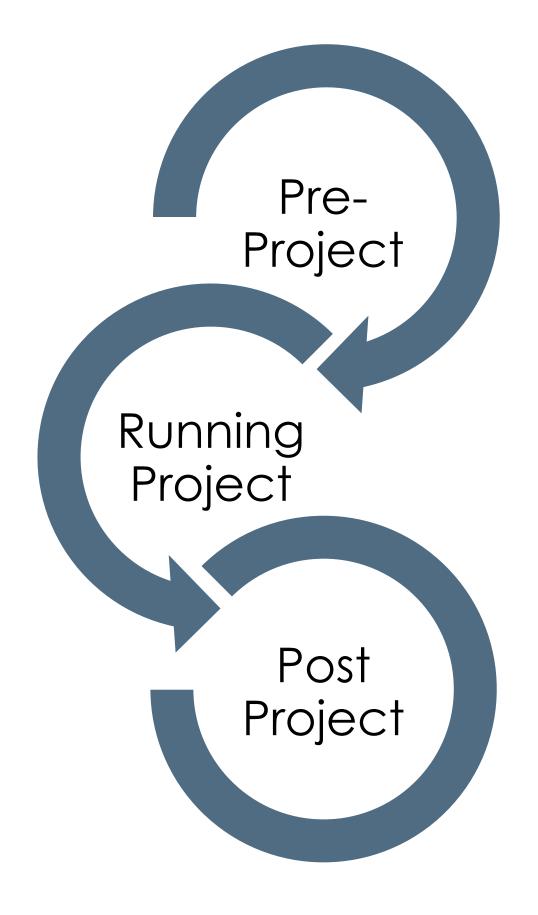
hanson.com.au | 1300 136 464





CO₂ Baseline

CO2 Baseline(simulated): 40 MPa


- Due to the lack of an industry wide CO2 baseline, we simulated our own baseline mixes:
 - Based on the Green Star Mat-4 Concrete Credit User Guide (2012)
 - Cement reference values were added to the GCCA concrete EPD tool
 - Default values (Australia specific)
 - The background information (incl. assumptions, generic mix designs) can be downloaded here: <u>https://hanson.com.au/background-gs-benchmarks.zip</u>

CO₂ Service Offer

 CO_2 is set to become a crucial budgeting currency in the construction sector. As such, it must be managed accordingly. Most provided embodied carbon emission data out there is based on estimates and typically handed over to the customer before a project starts.

At Hanson, we believe there's a better way to communicate carbon values, which also eliminates the current gap of carbon monitoring options during the construction phase in the market:

- & fast & reliable).

1) Pre-project: Predicting - We can provide you indicative CO_2 values for your specific project with our 3rd party verified CO₂ calculator (targeted

2) Running project: Monitoring - You get regular updates of your deliveries and how you track towards your carbon targets (no more surprises).

3) Post-project: Verification - You'll receive a final report and a projectspecific EPD based on actual deliveries (highest accuracy).

